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AN EXACT ANALYTICAL EXPRESSION OF THE SHEAR COEFFICIENT 
IN THE MINDLIN PLATE EQUATION 

INTRODUCTION 

The Mindlin plate equation is a model of a thin plate with the addition of rotary inertia and 
shear effects on the dynamics of the plate response.1 Incorporated in the Mindlin plate equation 
is a shear coefficient, which is an adjustment parameter in thick plate, beam, and shell equations 
of motion that is included to compensate for stress distribution in the cross-sectional shape of the 
object. It is sometimes designated the Timoshenko2'3 shear coefficient, a concept introduced by 
Timoshenko to account for the non-uniform shear stress distribution in a beam. Timoshenko 
estimated the shear coefficient as a function of Poisson's ratio in the beam.3 Cowper4 also 
estimated the shear coefficient as a function of Poisson's ratio, although he derived a slightly 
different expression. Over the years, it has become evident in beam theory that the shear 
coefficient is theoretically dependent on more than Poisson's ratio.5"8 The problem of 
determining the shear coefficient in a Mindlin plate equation has been addressed by Stephen,9 

who determined what he called a "best shear coefficient" based on matching a mode of the 
Mindlin plate theory to the exact Rayleigh-Lamb frequency equation for the flexural wave 
response. 

The above theories are all based on excitation of the flexural wave in a structure, and the 
corresponding shear coefficients are determined at the specific wavenumber and frequency of the 
flexural wave. They do not account for the shear coefficient as a function of all wavenumbers 
and frequencies, which is a response and excitation condition that exists in structures that are 
loaded by turbulent boundary layers or acoustical forces. 

This report derives an exact analytical expression of the shear coefficient in the Mindlin 
plate equation subjected to planewave excitation at any wavenumber and frequency. This is 
accomplished by computing the displacement field of the plate using the Mindlin plate equation 
and the thick plate equation, and then setting them equal to each other. Because the shear 
coefficient is explicit in the Mindlin plate equation and implicit in the thick plate equation, it can 
be solved for as a function of wavenumber, frequency, and plate parameters. A numerical 
example is included to depict the dependence of the shear coefficient on wavenumber and 
frequency. It is shown that the shear coefficient is only slightly dependent on frequency and 
extremely dependent on wavenumber of excitation. Comparisons of previous analytical 
expressions are also included in the numerical example to illustrate how other theories compare 
to the one derived here. 



SYSTEM MODELS AND THEORETICAL SHEAR COEFFICIENT 

Two system models are developed: one contains the shear coefficient explicitly and the 
other contains the shear coefficient implicitly. The first system model is that of a Mindlin plate 

whose governing equation is 
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where k is the shear coefficient, u(x,f) is the displacement of the plate in the z-direction,/x,0 is 
the force distribution on the plate, p is the density, ju is the shear modulus, h is the thickness, x is 
spatial location, t is time, V is the spatial gradient operator, and D is equal to 

D = 
Eh: 

12(1 -v2) 
(2) 

where E is Young's modulus, and v is Poisson's ratio. The system is modeled as infinitely long 
with a continuous forcing function varying in time and space; thus, the displacement and forcing 

function terms are written as 

u(x, 0 = U(p, co) exp(icot) exp(ipx), (3) 

and 

f(x,t) = F(p,co)exp(icot)exp(ipx), 

where co is angular frequency and/? is wavenumber with respect to the x-axis. Solving the 
transfer function response of displacement divided by input force yields 
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where 

a = -l2juh, (7) 



b = -\2Dp2 +ph3o)2, (8) 

c = \2Dphp4 -pph4co2p2 -\2pph2co2, (9) 

and 

d = -\2Dph(o2p2 + p2h4co4 . (10) 

The second model is derived from the equations of motion11 of a solid medium, governed by 

//V2u + (A + //)VV.u = yo^, (11) 

where A and p are the Lame constants, • denotes a vector dot product, and u is the Cartesian 
coordinate displacement vector of the plate. Assuming harmonic response in space and time, 
equation (11) can be manipulated; the resulting expression12 is the displacement in the z-direction 
at the middle location of the plate divided by the incident force and is written as 
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where 
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and 

A(p,a) = -8aßp2(ß2 -p2)2[cos(ah)cos(ßh) -1] 

+ [(ß2 -p2)4 + I6a2ß2p4]sm(ah)sm(ßh). (14) 

In equations (13) and (14), a is the modified wavenumber associated with the dilatational 
wave and is expressed as 

a = ^k2
d-p2 , (15) 



where kd is the dilatational wavenumber equal to colcd, where cd is the dilatational wavespeed 
(m/sec); ß'is the modified wavenumber (rad/m) associated with the shear wave and is expressed as 

ß- Ati-p1. (16) 

where ks is the shear wavenumber (rad/m) equal to colcs, where cs is the shear wavespeed 
(m/sec). The relationship between the wavespeeds (cd and cs) and the plate's Lame constants 
(A and //) is determined by 

cd = 
\A±lE (17) 

and 

Cs = 
\E (18) 
P ' 

The shear coefficient is now determined by equating equations (6) and (12) and solving for 
k, which results in 

,(,;„) = »ZM (19) 
a//A-ccp 

When the system response is at the flexural resonance, the determinant of equation (12) is 
zero and the corresponding shear coefficient calculated from equation (19) is 

k,(p,»)- — = —'f^V;pW m 1 c      \2Dnp*-/uph5colp   -12uphco1 

It is noted that this shear coefficient is not only a function of wavenumber and frequency, 
but also of Young's modulus, shear modulus, Poisson's ratio, and the thickness and density of 
the plate. 



NUMERICAL EXAMPLE 

A numerical example is now analyzed to investigate the behavior of the shear coefficient 
calculated using equations (19) and (20). The parameters of the plate are listed in table 1. Figure 1 
is a plot of the shear coefficient versus wavenumber and frequency as determined using equation 
(19). The parabolic line on the plot is the flexural wavenumber location calculated by finding the 
maximum value of the displacement in wavenumber at each analysis frequency. The weak line 
originating at the origin and ending at/= 10,000 Hz and/? = 75.4 rad/m is the plate wave 
dynamics propagating through the analysis. This plate wave wavenumber can be predicted by 

',-r^r1- (21) 

The thick plate equation of motion contains the plate wave dynamics while the Mindlin plate 
equation does not; thus, accounting for a modeling difference around the plate wavenumber. The 
result of this model mismatch is that the theoretical shear coefficient factor will not be accurate in 
the region around the plate wavenumber. Figure 2 is a cut of figure 1 in wavenumber at 4000 Hz, 
which illustrates the dependence of the shear coefficient on wavenumber. The square marker (D) 
is the plate wavenumber and the round marker (O) is the flexural wavenumber. Figure 3 is a cut 
of figure 1 in frequency at the flexural wavenumber. The shear coefficient estimate derived by 
Timoshenko3 is indicated by the symbol x and is given by the wavenumber and frequency- 
independent equation 

jfc = l±^>. (22) 
6 + 5L> 

The star symbol (*) is the shear coefficient derived by Stephen9 and is equal to 

k=-^-, (23) 
6-u 

and the plus symbol (+) is the shear coefficient estimate derived by Cowper4 and is written as 

,     10 + lOü 
12 + llü 

(24) 

These shear coefficients are shown at low frequency because they were derived using long 
wavelength assumptions. It is clear that these estimates are close to the exact solution derived in 
equation (20) for wave propagation at (or near) the flexural wave propagation wavenumber and 
frequency. They do not account for wave propagation at other wavenumbers. 



Table 1. Plate Parameters Used for Numerical Example 

Parameter Value 

Thickness, h 0.01 m 

Young's Modulus, E 7.0e8 N/m2 

Shear Modulus, G 2.5e8 N/m2 

Poisson's Ratio, v 0.4 (dimensionless) 

Density, p 1200 kg/m3 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
2000 4000 6000 

Frequency(Hz) 
8000 10000 

Figure 1. Shear Coefficient Versus Wavenumber and Frequency for the Numerical Example 
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Figure 2. Shear Coefficient Versus Wavenumber at 4000 Hz for the Numerical Example 
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Figure 3. Shear Coefficient Versus Frequency at Flexural Wave Resonance 
for the Numerical Example 



The most interesting aspect of this analysis is that the shear coefficient is highly dependent 
on the wavenumber. This dependency was previously unknown; however, the fact that the 
dynamics of the system are dependent on the wavenumber of the excitation is not a new concept. 
In this type of analysis, low wavenumber excitation generally results in a structural response that 
is composed of primarily dilatational waves that contain the majority of the energy. (At zero 
wavenumber, the response is entirely a dilatational wave response.) Shear effects are secondary 
until the wavenumber of the excitation becomes moderate. Previous work has typically 
consisted of exciting the flexural wave in a beam, measuring response, and then back-calculating 
the shear correction factor. It has not consisted of exciting the structure at all wavenumbers and 
then determining the correction factor. (It should be noted that broadband wavenumber 
excitation of a structure is not easy to implement.) 

CONCLUSIONS 

The theoretical shear coefficient for a Mindlin plate has been derived as an analytical 
expression. It is shown that this term is dependent on wavenumber, frequency, Young's 
modulus, shear modulus, Poisson's ratio, density, and thickness of the plate. Numerical 
simulations showed that the shear coefficient is extremely dependent on wavenumber but only 
slightly dependent on frequency. Previous shear coefficient expressions are close to the 
analytical expression derived here around the flexural wave wavenumber of the plate. 
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